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Abstract

A new class of high-order monotonicity-preserving schemes for the numerical solution of conserva-
tion laws is presented. The interface value in these schemes is obtained by limiting a higher-order
polynomial reconstruction. The limiting is designed to preserve accuracy near extrema and to work
well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that
determines whether the limiting procedure is needed. For lincar advection in one dimension, these
schemes are shown to be monotonicity-preserving and uniformly high-order accurate. Numerical
experiments for advection as well as the Euler equations also confirm their high accuracy, good

shock resolution, and computational efliciency.



Introduction

We consider higher-order schemes (at least third-order) for the numerical solution of the Euler
equations. Typical solutions to these equations have smooth structures interspersed with disconti-
nuities. The challenge is to develop schemes that are highly accurate in smooth regions and have
sharp nonoscillatory transitions at discontinuities.

Achieving this dual objective remains a daunting task. Among the first attempts, Colella and
Woodward [2] introduced a piecewise parabolic method (PPM), which employs a four-point centered
stencil to define the interface value; this value is then limited to control oscillations. The centered
stencil, however, results in a scheme with a large dispersion error, and the limiting procedure causes
accuracy to degenerate to first-order near extrema.

The essentially nonoscillatory (ENO) schemes of Harten et al. [3] were developed via a different
line of thought. In these schemes, an adaptive stencil is used to select the “smoothest™ data,
thereby avoiding interpolations across discontinuities. While an adaptive stencil does avoid spurions
oscillations near discontinuities, it does not make use of all the available data. The weighted-ENO
(WENO) schemes by Liu et al. [11] and Jiang and Shu [9] make better use of the available data
by defining the interface value as a weighted average of the interface values from all stencils. The
weights are designed so that in smooth regions the scheme nearly recovers a very accurate interface
value using all stencils but, near discontinuities, it recovers the value from the smoothest stencil.
The WENO schemes, however, are still diffusive: they smear discontinuities nearly as much as the
ENQO schemes.

In this paper, we follow the limiting approach. The interface value is defined by a five-point
stencil. As aresult, the leading error is dissipative, and the dispersive error is considerably smaller
than that of the four-point stencil. This interface value also combines well with the three-stage
Runge-Kutta time stepping. Similar to PPM, oscillations are controlled by a limiting procedure.
The key differences, however, are that our limiting is designed to preserve accuracy near extrema
and to work well with Runge-Kutta time stepping. The resulting scheme is accurate in smooth
regions, resolves discontinuities with high resolution, and is also efficient.

Note that a piecewise linear scheme of this type was presented by Huynh [6]. Extensions to

piecewise parabolic schemes were presented by Suresh [18] and Huynh [7]. The present scheme



incorporates these ideas within a Runge-Kutta time integration framework.

In §1, the spatial discretization and the Runge-Kutta time integration are reviewed. Section 2
describes the reconstruction procedure, which is the key feature of our scheme. Extensions of this
scheme to systems of equations and multi-dimensions are dealt with in §3. Numerical experiments

appear in §4. Finally, conclusions are presented in §5.
1. Discretization
For simplicity, we describe the methods for the advection equation with constant speed «,
w + auy, = 0, (1.1a)

u(z,0) = up(z) (1.10)

where 7 is time, z is distance, and ug() is the initial condition. For the moment, the solution is
assumned to be periodic in x so that no houndary conditions are needed.
Let z; be the cell center of a uniform mesh, 2./, the interface between the j-th and j + 1-th
cells, and h the cell width. Denote by @;(¢) the cell average of u at time ¢,
i 1 o172
u;(t) = —/ u(x,t)de. (1.2)
h Ty—1/2
Integrating (1.1a) over the cell [z;_y /5, %,44/y] vields

dii; a

di E [7[((1']+1/2,t)—7[(.7"]'_1/2,1) = 0. (13)

At time {" = n7 where 7 is the time step, assume that we know vf which approximates u;(t").

We wish to calculate v}”’l. For simplicity of notation, we omit the superscript n when there is no

n

confusion, e.g., v; denotes v7.

An approximation to u(z;4q/9,t") is called the interface value and is denoted by v;41/,. The
calculation of the interface value from the known cell averages is accomplished in two steps. In

the first or reconstruction step, nonoscillatory approximations of u(2;41/2,1™) to the left and right

R

L
j+1/2

sides of the interface z;,,/, denoted by V12 and v are constructed. This step determines

the scheme’s order of accuracy and is the main concern of this paper. In the next or upwind step,
. ! , . . . , R . . - _ L .

the interface value is determined by the wind direction: If @ > 0, vj4q/0 = U2 otherwise,

. _ .R s . : . , i valinec 11l R .
Di41/2 = Upyy/o- T'hus for advection, we need only one of the two values Ui/ and CHRPPS For the



Euler equations, however, we will need both, and we employ well-known methods for the upwind
step.
Equation (1.3) can be integrated by a standard Runge-Kutta method. Here we use the three-

stage scheme of Shu and Osher [15]. With v representing {v;}, denote by L(v) the spatial operator

L(v); = =(vj4172 = v_170)- (1.4)
Then this scheme is given by
w0 =y
w) = w0 4 g L(w®)
w?) = %w(o) + %(w(l) + o L(w(y) {1.5)
w(3) — %uy(o) + %(u)(z) + O'L( uv(2)))
= w(S)

where ¢ = ar/h is the CFL number.

Observe that Runge-Kutta schemes like (1.5) are made up of repeated applications of a single
stage scheme given by w*) + o L(w®), k = 0.1, and 2. Moreover, cach stage is an explicit Euler
scheme, e.g.,

1 .
W) = v = o(v,017 = vj-172)- (1.6)

Therefore, we first design a monotonicity-preserving scheme for (1.6) and then extend it to the full
scheme (1.5).

2. Reconstruction

Without loss of generality, we discuss the reconstruction only for l’f+l/2, i.e., we assume a > {).
The reconstruction is carried out in two steps. In the first step an accurate and stable formula is
used to compute the interface value which is called the original value. In the second step, this value
is then modified or limited appropriately to achieve a monotonicity-preserving scheme.

A straightforward choice for ”JL+1/2 using the five cell averages v;_o,...,v;42 (the same stencil

as the third-order ENO scheme) is
v = (20,00 = 13u,mp + 470, 4 270,41 — 30;4,)/60. (2.1)
Other choices include a low phase error fourth-order formula [8]

Vi1 = (9v-2 — 56,1 + 1940, 4 10dv;4, — 11v;45)/240, (2.2)



or a fifth-order accurate implicit formula given by
(3vly g + 60Ty + vTa75)/10 = (i1 + 190, + 100,41)/30. (2.3)

The implicit formula has the advantage of low dispersive and dissipative errors; its disadvantage is

that the tridiagonal matrix inversion costs more.

2.1 Monotonicity constraint
We derive constraints for the interface value so that monotonicity is preserved by (1.6). First,
we need a few definitions. Let the median of three numbers be the number that lies between the

other two. Let minmod (z,y) be the median of z, y, and 0. Equivalently,
minmod (z,y) = § [sgn(z) + sgn(y)] min (|z|, |y]). (2.4)
Conversely, the median function can be expressed in terms of minmod,

median (z,y,2) = z + minmod (y — z,z — ). (2.5)

The minmod function can be extended to any nuinber of arguments. For k arguments, minmod (.. ...

returns the smallest argument if all arguments are positive, the largest if all are negative, and zero

otherwise. This function can be coded as

minmod (zy,...,2¢) = smin(|z1]. ... |2]) (2.6a)
where
s = 3(sgn(z1) + sgn(z2)) i%(sgn(:l) +sgn(z3)) ... 3(sgn(s1) + Sgll(:k))l . (2.6b)
Also denote by I [z1,..., 2] the interval [min(zy,...,2x), max(zy,...,2)].

We can now derive a simple condition that preserves monotonicity. At interface j—1/2, suppose

the value UJL—I/Q lies between v;_; and v;:
vl e Tvj_y, ;] (2.7)
j-1/2 -1, Y5]- o
Next, for the interface j + 1/2, denote

U = v, + afv, — v;_y) (2.8)

%
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Figure 2.1: Monotonicity-preserving constraint (2.7) and (2.9).

where UL stands for upper limit, and o > 2 (more on o momentarily). Suppose the value 1‘};1/2

. ]
lies between v; and UL,
;

lv]l.‘+1/2 € ][’UJ‘, 'UUL]. (2()]

Then, after one stage via (1.6). the solution wﬁ-l) lies between v;_, and v; provided that the time

step satisfies the condition

o < 1/(1+a). (2.10)

Indeed, for increasing data, (2.7) and (2.9) imply that the steepest slope 'L — vj_; satisfies
UL — v,-1 < (a4 1)(v; — v;_y); therefore, (2.10) implies mop < u‘jn < v,. See Fig. 2.1.

Note that for parabolic reconstruction schemes, a is typically 2. For Runge-Kutta time stepping,
we find that a = 4 works well, while @ = 2 tends to cause stair-casing. With a = 4, (2.10) leads to
a CFL number ¢ < 0.2 but, in practice, o = 0.4 still yields nonoscillatory results.

Next, assume that (2.7) and (2.9) hold for all j. Expression (2.7) with index j replaced by j+1
takes the form

UJLH/Q € Ivj,vjq). (2.11)
The above and (2.9) result in the condition that UJLH/2 lies in the intersection of the two intervals
I[v;,v;41) and I[vJ,vUL]. One end of this intersection is v;. The other is the median of v;. Vi1,
and vYL, and is denoted by vMP. Using v; as the pivot, v™? can be expressed by using the minmod
function,

oM = v; + minmod [v; 41 — vy, a(v; = v,-1)]. (2.12)



Thus, (2.9) and (2.11) imply

L MP ¢
The simplest way to satisfy this constraint is to replace the original 1>JL+1/2 by the median of 1wJ.L+1/2,
v;, and oMPFP:

L : L MP 9 1.
i1/ = median (v /5, 05,07 0). (2.14)

Expression (2.14) preserves monotonicity in the following sense: under the CFL restriction
(2.10) if the data {v;} are monotone, then after one stage, {wgl)} are also monotone. This fact
follows because wgl) lies between v;_; and v; for all j.

The monotonicity-preserving property extends ecasily to the full scheme (1.5). Indeed. given
monotone data {v;}, we have just shown that {w(1} are monotone provided the interface values
are given by (2.14) and the above CFL restriction is satisfied. Since {uw{!)} are monotone. the

quantities {w( + o L(w(!))} are also monotone because they result from applying a single stage
(2)

scheme to {w(}. Next, for cach j, w;”" is a combination of v; and (wtV) +0(L(w(1)))j with positive
weights independent of j. Therefore, {w§2)} are monotone as well. Repeating this argument, it
follows that {wﬁ-s)} are also monotone. Thus, if the data {v;} are monotone, and the interface
values are obtained by (2.14), then the cell averages at the next time level {v}‘“} are monotone
under the CFL restriction (2.10).

The drawback of (2.14) is that near an extremum, it causes accuracy to degenerate to first-

order. Figures 2.2(a) and 2.2(b) show the loss of accuracy caused by the constraints (2.11) and

(2.9), respectively. Note that the data are on a parabola.

2.2 Accuracy-preserving constraint
To avoid the loss of accuracy, we enlarge the intervals in (2.11) and (2.9) in such a way that
these intervals remain the same for monotone data but, near an extremum, these intervals are

ol

larger, and both contain the original )20

First, the interval in (2.11) is enlarged by adjoining the value v*P defined below (MD stands
for median). At interface j +1/2, let »FF and v¥® be the values extrapolated linearly {rom the left

and right, respectively,

FlL, 1 FR 1 -
v’ =+ (e = o), e = vy 4 (v - vyg2) (2.1



(a) (b)

Figure 2.2: Loss of accuracy near extrema: (a) by (2.11) and (b) by (2.9).

With
o = 1w + 540, (2.16)
where AV stands for average, set
vMP — median (v WL IRy, (2.17)
Constraint (2.11) is relaxed to
A 51
UJ-L“/Q € Ivj,vj41.0MP). (2.1%)

One can verify that if the four picces of data {v,_1,v;,v;41.7,42} are monotone, then, at the
interface j 4+ 1/2, vMP lies between v; and v;4;, and the above constraint reduces to (2.11). Near

an extremum as in the case of Fig. 2.3 (a), however, vMP lies outside I (v;,2;31] and provides room

L

. . AMD . et
so that the interval I [v;, vj41, v ] contains the original e

The argument (2.15)-(2.18) conveys the idea. For the purpose of coding, it is more efficient if

we employ the second differences. Set

dy = v, +vj4q — 205, (2.19)
and
d;\i‘}?z = minmod (d;,d;4), (2.20)

where MM stands for minmod. Then, since ol = 4V _ %(lj and similarly for ¥ it follows that

MD _ AV 1 MM DX
v =0 2(1]-“/2. (2.21)
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Figure 2.3: Enlarged monotonicity interval (a) by (2.18) and (b) by (2.23).

Next, the interval in (2.9) is enlarged by adjoining the value v2¢ defined below (LC stands for
large curvature). Consider the parabola p determined by the cell averages »;_{, v;, and the second

difference d (a quantity similar to d;). A straightforward calculation gives the value at 2, /s,

P(2,4172) = v+ Svy — v, + 3d.

The parabola with d = 2(1}‘1‘}’/2 gives

ot =+ vy — ) + 34X, (2.22)
Constraint (2.9) is relaxed to
'nJI:‘_l/Q € I, VL k0, (2.23)

Using the fact that o > 2, one can verify that if the four pieces of data {v, 2. v,_1. 05 04 )

are monotone, then, at the interface j + 1/2, v*C lies between v; and oYL, The above constraint

therefore reduces to (2.9). Near an extremum as in the case of Fig. 2.3 (b), however, v¥€ lies outside

L
j+1/2°

UL »L€] contains the original v

I [vj,vY"] and provides room so that the interval I [v;,v
In practice, we reduce the amount of room so that near a non-monotone discontinuity (such

as a sawtooth profile), constraints (2.18) and (2.23) reduce to (2.11) and (2.9) respectively. This

reduction can be accomplished by replacing dfﬂ/f/z by
d?'ﬁ/? = minmod (4d; — dj4+1,4d;41 — d;. d;.dj41). (2.24)

To clarify the role of dM*, assume that d; and d;4y are of the same sign. Then if d,/d, 4, < 1/1

or d,/d;+1 > 4, the above minmod of four arguments returns 0. Loosely put, when the second



M4
7+1/2

ones in (2.9} and (2.11). We thus replace expressions (2.21) and (2.22) for each interface j + 1/2

differences change substantially, then d = 0, and the extended intervals reduce to the simple

by
yMD _ AV %dfﬁ/w (2.25)
€ = v, + %(vj - 'U]—l) + %d‘;i(‘l/g' (2.26)

The intersection [v™", »™M2X] of the two intervals I [v;, v; 41, v™P] and I'[v;,vYE v2C] can be calcu-

lated by

min

v = max[ min(v,, v41, UMD)

.min{v;, oUE ULCJ], (2.27a)

o™ = min[ max(vj, v;41, vM?), max(re,. ! pF). (2.27h)

L

: nL Toe Jin ,,max o ronlace Ll . H .
Finally, to ensure that U /2 lies in [p™1, p™MaX] " we replace U2 by the median of RS

v and p™eX;

vJ-LH/z — median (l’JL+1/2, pmin pimaxy (2.28)

The above limiting procedure preserves monotonicity and accuracy. In addition, for most cells

in smooth regions, the original v/

12 satisfies constraint (2.13) a priori. In this case, the limiting

L

[RYPL As a result, we can use (2.13) to detect

procedure (2.24)-(2.28) does not alter the original v

L

such cells and bypass the limiting procedure altogether. The condition that the original "2

o MP)

lies in the interval I [v,, is equivalent to (1']1'“/2 - 1)J)(1"J[‘+l/2 - eMP)y < 0. In practice. this

condition is coded with a tolerance value of ¢ = 10710:

L L S MP 5
(04172 = 0 Ny — 07 0) < e (2.29)
We summarize the computation of the interface value below.

Algorithm for the interface value. Suppose the cell averages {v;} are given, and a > 0. For
each interface j+1/2, calculate the original value vjlfﬂ/z from (2.1), and v™¥ from (2.12). If (2.29)

holds, then v;yy;, = CRAYPe and we move on to the next interface. Otherwise, calculate d;_y, d,,

d;+1 from (2.19), dﬁ‘i/z and (I‘J‘f‘l/,z from (2.24), oYL from (2.8), vV from (2.16), vMP and vLC

from (2.25) and (2.26), and v™i" o™*¥ from (2.27). Finally, calculate vl

P p1 2 from (2.28). and the

H . i N — L
interface value is then v, ,/, = Ve

10



2.3 Remarks

Note that constraint (2.13) on the interface value is a sufficient condition for monotone data
to remain monotone under Runge-Kutta time stepping. It may be viewed as the analogue of Van
Leer’s constraint [19] which provides the same type of condition for monotonicity under exact time
evolution. Also note that the geometric framework, the use of the median function, and v™? were
introduced by Huynh in [5].

For advection with a < 0, the interface value v]-RH/2 is obtained by reflecting the above expres-

sions about ;5. To be specific, the reconstruction algorithm is the same with {v;_2,v;-1,v;, V41,

viro} replaced by {v;y3,v;12,v;41,0;, 051} respectively. Next, the stencil for computing both
i+ p ¥ U435 V5425 Vj41, V55 U5 p Yy p g

ijH/? and U]R+1/2 consists of the six points {v;_,,...v;43}. Therefore, we could define both L‘J[»‘+1/2
and vft by the quintic fit of all six cell averages without enlarging the stencil (in the case of

J+1/2

Fuler equations). The corresponding limited scheme, however, is prone to stair-casing.
Higher-order schemes can be derived using larger stencils. With the same stencil as the mth-
order ENO scheme, a (2m — 1)th-order scheme can be obtained. For example, for m = 1. we have

the seven-point formula

v = (=305 + 250,25 — 101v,-1 + 319%; (2.300)
+214v;_1 — 382,49 + 4v;43)/420,
and, for m = 5, the nine-point formula
vl p = (dvmg = 4lu,_g + 1990, — 64101 + 18797, (2.300)

+1375v,41 — 3051549 4 55v,43 — 5, 44)/2520.
The same limiting can be employed for these original interface values. The resulting schemes achieve
high spatial accuracy but remain third-order in time. For the fourth- and fifth-order Runge-Kutta
methods, in order to preserve monotonicity we need the calculation of the time-reversed operator
L [15], which is beyond the scope of this paper.
The above reconstruction depends continuously on the data in the sense that a small change in
the data causes a small change in the interface value. This property is shared by WENO (but not

by ENQ) reconstruction.
3. Extensions

In this section, we describe the extensions of the above schemes to the Euler equations. While

these extensions are standard, the monotonicity-preserving property may not hold because the equa-

11



tions are nonlinear. Nevertheless, the numerical solutions obtained below are generally nonoscilla-

tory.

3.1 Euler system in one dimension

The Euler equations of gas dynamics for a polytropic gas can be written as

u +f(u)e = 0 (3.1)
where
u = (p’pu’E)Ta
f(u) =wu+(0,p, up)T, (3.2)
P =(y - 1)(E - 1pu?).

Here, T' represents the transpose; p, u, p, and E are the density, velocity. pressure, and total energy
respectively; and 4 = 1.4, is the ratio of specific heats. The speed of sound ¢ is given by (yp/p)'/2.
The eigenvalues of the Jacobian matrix A(u) = 8f/0u are u — ¢, « and u + c. The matrices of

left and right eigenvectors of A are needed in the reconstruction. These are given by ([3])

ba/2 +uf2¢ —byuf2—1/2c b/)2
L= 1——[)2 b]U ——[)1 (35)
ba/2 —uf2c —byu/2+ 1/2¢ b/2

and
1 1 1
R = u-—c u u+c (3.-1)
H ~ uce %uz H + uc
where by = (y — 1)/c? and by = w®by /2, H = ¢*/(y — 1) + Lo
Integrating (3.1) over the cell [z, 5.2, /5] vields
da, 1 a =
it [fuleg2,0) = f(u(z,_y0)] = 0, (3.5)

where @;(¢) are the cell averages. The first step in calculating fir172 ~ f(u(z;41/2,17)) is to
reconstruct u on both sides of the interface z;,;,.

It is well known that the reconstruction is best carried out in local characteristic variables [3]. If
{v;} are the approximations to the cell averages at time level n, these local characteristic variables

for the cell [z;_y/,, Ti41/2] are given by

wi = L{v;)vpi, for k= -22 (3.6)

12



The scalar reconstruction algorithm is now applied to obtain point values wflﬂ and wlL/2 at T,41/0
and x;_y /g, respectively. The corresponding conservative variables Vf+1/2 and VF—1/2 are obtained

by the inverse of (3.6)
L ‘ L R R -
Vit = R(v)wi),, Vili2 = R(V;)IWI . (3.7)

At each interface j + 1/2, the two values v]LM/2 and v?+1/2 are used to calculate f;,;/, via Roe’s
flux-difference splitting [12). This splitting is implemented here with Huynh’s entropy fix [6].
Equation(3.5) is then integrated by the Runge-Kutta scheme (1.5). The time step is given in

terms of the CFL number ¢ by
_ o h
© Max,(Ju;] +¢;)’

At (3.8)

Note that the extension described above is standard, but it does not take advantage of the fact
that our reconstruction algorithm leaves the left and right interface values unchanged in smooth
regions away from extrema. In these regions, the reconstruction applied to the local characteristic
variables yields a result identical to formula (2.1) applied to the conserved variables {v;}. Thus. the
expense of characteristic decomposition may be avoided for such regions if they could be detected

in a simple manner as in [6]. However, we do not pursue this approach here.

3.2 Euler system in two dimensions

An immediate extension of the above scheme to multi-dimensions can be accomplished in the
same manner as the finite difference ENO schemes of Shu and Osher [15]} {16]. The idea is to
avoid calculating the mixed derivatives of the reconstruction from cell averages by applying the
reconstruction directly on point values of the fluxes. The reconstruction then reduces to two one-
dimensional reconstructions along the coordinate lines. The same Runge-Kutta scheme (1.5)is used
to integrate the equations in time. Here we have chosen the Lax-ITiedrichs version (ENO-LLF) in
our numerical experiments. The 2D extension of the schemes derived here are obtained by substi-
tuting our algorithms for reconstruction in place of the scalar one-dimensional ENO reconstruction

therein. Coding aspects of these schemes can be found in [17].
4. Numerical experiments

For simplicity, we present numerical results only for the scheme combining the quartic fit (2.1)

and the accuracy-preserving constraint (2.28). We refer to this scheme as the MP5 scheme (MP

13



for monotonicity preserving). Some comparisons with ENO3 and WENOS5 schemes are provided.
The three schemes MP5, WENOS5 and ENO3 have the same stencil, and the first two are spatially
fifth-order accurate. Listings of the these three reconstruction procedures in Fortran are given in
Appendix A. Also note that we employ only uniform meshes and, unless otherwise stated, the CFL
number is 0.4.

All computations are carried out on a 100 MHz R4000 SGI Indigo Workstation, with € = 10~10
and o = 4. In all cases, the compiler options -r8 -03 were used. We have observed that computing
times vary widely depending on the hardware and compiler options used. Therefore, computing
times are to be viewed only as an approximate measure of the efficiency of the various schemes.
The computing time for the scheme with constant reconstruction and the three-stage Runge-Kutta
time stepping is also provided as a reference. Since the reconstruction is trivial for this scheme.

this computing time reflects the cost of all other calculations except reconstruction.

4.1 Advection of a smooth function

We solve (1.1) with u(z,0) = sin(7x)* with periodic boundaries. We are particularly interested
in the behavior of the errors of the cell averages under mesh refinement. Since the function is
smooth, the most accurate and efficient scheme with the given stencil of five cell averages is the
unlimited scheme (2.1). We compare the results of the WENOS5 and MP5 schemes to this unlimited
scheme for o = 0.05 in Table 2 (a) and & = 0.1 in Table 2 (b). The results from ENO3 are less

accurate and are not shown.

Note that the errors obtained by the unlimited scheme and those by the MP5 scheme are
essentially identical. This confirms that the limiting procedure leaves the quartic fit unchanged
at smooth extrema. At low CI'L numbers, the MP5 scheme approaches the theoretical order of
accuracy of five as can be seen in Table 2(a). In both cases, the MP5 scheme compares favorably

with the WENOS scheme in both accuracy and efficiency.

14



Table - 2: Advection of sin(rx)?* by several schemes. t = 2, Az = 2/N, CPU time quoted is for

all grids.
Table 2(a): At/Az = 0.05, CPU time for constant reconstruction: 4.30 sec.
Scheme | N | Lo error | Ly, order | Ly error | L order | CPU time - sec.
16 | 2.39(-1) - 1.07(-1) -
32 | 3.45(-2) 2.79 1.73(-2) 2.62
WENO5 | 64 | 3.51(-3) 3.29 1.75(-3) 3.31 22.33
128 | 3.44(-4) 3.35 8.88(-5) 4.30
256 | 1.15(-5) 4.90 2.54(-6) 5.13
16 | 1.17(-1) - 8.05(-2) -
32 | 1.40(-2) 3.06 8.14(-3) 3.31
MP5 64 | 5.05(-4) 4.80 3.01(-4) 4.76 11.86
128 | 1.63(-5) 4.96 9.74(-6) 4.95
256 | 5.25(-7) 4.95 3.14(-7) 4.96
16 | 1.17(-1) - 8.05(-2) -
32 | 1.40(-2) 3.06 8.14(-3) 3.30
Unlim. | 64 | 5.05(-4) 4.80 3.01(-4) 4.76 6.18
128 | 1.63(-5) 4.96 9.74(-6) 4.95
256 | 5.25(-7) 4.95 3.14(-7) 4.96

Table 2(b): At/Ax = 0.4, CPU time for constant reconstruction: 1.05 sec.
Scheme N | L error | Ly, order | Ly error | Ly order | CPU time - sec.
16 | 2.39(-1) - 1.07(-1) -
32t 3.74(-2) 2.68 1.87(-2) 2.52
WENOS5 | 64 | 3.26(-3) 3.52 1.79(-3) 3.39 3.30
128 | 3.00(-4) 3.44 1.11(-4) 4.01
256 | 1.25(-5) 4.58 6.17(-6) 4.17
16 | 1.21(-1) - 8.01(-2) -
32 1.77(-2) 2.77 1.03(-2) 2.96
MP5 64 1.10(-3) 4.01 6.15(-4) 4.06 2.02
128 | 9.50(-3) 3.54 5.05(-5) 3.61
256 | 1.04(-5) 3.19 5.42(-6) 3.22
16 | 1.21(-1) - 8.01(-2) -
32 | 1.77(-2) 2.77 1.03(-2) 2.96
Unlim. 64 | 1.10(-3) 4.01 6.17(-4) 4.06 1.29
128 | 9.50(-5) 3.54 5.04(-5) 3.61
256 | 1.04(-5) 3.19 5.42(-6) 3.22
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4.2 Advection of a piecewise continuous function
Next, the initial condition is given by

ug(z) = exp(—log(2)(z + 0.7)2/0.0009) if —08<z < —0.6,

ug(z) =1 if —04<z<-0.2,
up(z) =1-[10(z - 0.1)] if 0<z<0.2, (4.1)
wo(z) = [1-100(x — 0.5)2]"/* if 0.4<a2 <086,

up(z) =0 otherwise.

This initial condition includes a Gaussian wave, a square wave, a triangular wave, and a semi-
ellipse. We use 200 cells with ¢ = 0.4. The solutions at ¢ = 2 (after one period or 200 cells) and
t = 20 (ten periods) are shown in Figs. 4.1 and 4.2 respectively. The solid line represents the exact
solution. Also shown are the computing times of the various schemes. Again, note that the MP5
solutions compare well with those by ENO3 and WENOS5 schemes.

Resolution at discontinuities can be enhanced by using steepening techniques as in [4], [21]. and
(6]. These techniques are expensive and, while they are effective in one dimension, it is still not
clear how well they perform in multi-dimensions. Here, we will limit our study to the base schemes

only.

4.3 Euler system in one dimension
In the following three problems. the CFL number is 0.4. and the spatial domain is [—1. 1.
For the initial conditions, unless otherwise stated, the subscript I denotes —1 < « < 0. and R.
0 <z < 1. The final time is denoted by ty, and the total number of cells, by N.
1. Sod’s problem [13]
('PInUL,PL) = (19051)a
(pu. u}g,pR) = (0.125.0.0.1 )

ty =04,
N = 100.

Since this problem starts from a singularity, smaller time steps are used initially as described in
[6]. The density field from the MP5 scheme is shown in Fig. 4.3. Note that the contact discontinuity

and the shock are resolved with high resolution.
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Figure 4.1: Advection over a period by (a) MP5, (b) WENO5, (¢) ENO3, (d) Unlimited scheme
At/Ar = 0.4, Az = 2/200, t = 2, CPU time for constant reconstruction = 0.63 sec.
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At/Az = 0.4, Az = 2/200, t = 20, CPU time for constant reconstruction = 2.69 sec.
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2. Lax’s problem [10]

(pL,uL,pL) = (0.445,0.698,3.528),
(pr.ur,pr) = (0.5,0,0.571),

ts 0.32,

N = 100.

The density field from the MP5 scheme is shown in Fig. 4.4. Again, the contact discontinuity

and the shock are well-resolved.
3. Shu’s problem [14]

In this problem, a moving shock wave interacts with a density disturbance and generates a flow
field with both smooth structure and discontinuities. Here, L stands for —1 < x < —-0.8, and R,

—0.8 < 2 < 1. The initial conditions, final time, and number of mesh points are

(pr.ur,pr) = (3.857143,2.629369,10.3333),
(pr,ur,pr) = (1 4+ 0.2sin(57z),0, 1),
ty = 0.36,
N = 300.
Since the exact solution is not known, the solution by ENO3 with 800 cells is used in its place.

The results of MP5 and WENQOS are shown in Iig. 4.5. The MP5 scheme captures the shock

with high resolution and resolves all local extrema accurately.

4.1 Euler system in two dimensions

We present results for two well known problems.
1. Oblique shock reflection [1]

The domain [0,4] x [0, 1] is covered by a uniform mesh of 60 x 20 cells. The boundary conditions
are: at the bottom, solid boundary; at the right, supersonic outflow; at the left, the conditions are
fixed with

(pyu,v,p) =(1,2.9,0,1/7);

and at the top,
(p,u,v,p)=(1.69997,2.61934, —0.50632, 1.52819).

Under these conditions, an oblique shock forms from the top left corner and is reflected by the

bottom boundary. Initially, flow conditions at the left boundary are set throughout the whole
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domain. After 10,000 iterations, the solution essentially reaches steady state. The residual drops
roughly 2 orders of magnitude for M5, WENOS5, and ENO3, while for the minmod and first-order
upwind schemes the residual drops to machine zero. (Note that the minmod scheme is defined by
Wf/z = wg + %minmod (w; — wg,wo — w_3), where w is the characteristic flux in this case.)

The pressure along the line y = 0.55 (j=11) is shown in Fig. 4.6. Concerning accuracy, it
can be seen that the higher-order schemes have small oscillations about the exact solution. These
oscillations are reduced on finer grids for all three schemes. Note that the MP5 scheme yields a
highly accurate solution.

The computing times of the various schemes are also shown in Fig. 4.6. The first-order and
minmod schemes are coded here with the local characteristic decompositions over the full five-point
stencil. This first-order scheme represents the most efficient reconstruction in this framework, and
its CPU time reflects the overhead of the characteristic decomposition. It can be seen from Fig. 1.6
that the overhead is more than half of the total computing time. In other words. unlike the case of
advection, the computing time of the reconstruction step for the Euler equations is less than one

third of the total time.
2. Double Mach reflection [20]

The computational domain is [0, 1] x [0, 1]. The reflecting wall is from (1/6,0) to (4,0). Initially,
a Mach 10 shock is incident on this wall at (1/6,0) making an angle of sixty degrees with the z-axis.
To the right of the shock is undisturbed fluid of uniform pressure 1 and density 1.4. To the left of

the shock, the conditions are
(pouv,p)=(8.0.7.1447,-4.125,116.5).

As the shock reflects off the wall, a diffraction pattern is formed. The final time is ty = 0.2. A
detailed description of the problem and various solutions can be found in [20].

The boundary conditions are: at the bottom, from (0,0) to (1/6,0), linear extrapolation; from
(1/6,0) to (4,0), solid boundary: at the right, linear extrapolation; at the left, supersonic inflow;
at the top, time-dependent conditions determined by the exact motion of the Mach 10 shock.

The MP5 and WENOS solutions, obtained using a 210 x 60 mesh, are shown in Fig. 4.7. It can
be seen that both schemes capture all the significant features of the solution such as the two Mach

stems and the wall jet.
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5. Conclusions

A new class of high-order schemes for the numerical solution of hyperbolic conservation laws was
introduced. The key feature of these schemes is the reconstruction procedure which combines an
accurate interface formula with a monotonicity-preserving constraint. The constraint is designed
to preserve accuracy and to work well with Runge-Kutta time stepping. It is shown that, for
advection, if the data aré monotone, then the solution is also monotone under a time step restriction.
Numerical experiments confirm that the resulting scheme is accurate in smooth regions, resolves
discontinuities with high resolution, and is also eflicient. The new scheme compares favorably with

state-of-the-art schemes such as ENO3 and WENOS3.

Appendix-A

In this appendix, we give the listings of the three higher-order reconstruction algorithms in For-
tran. V(J) are the cell averages v; and VL(J) are the computed interface values UJ'L+1/‘2' DMM(X.Y)
is the minmod function of two arguments while DM4(W . X Y.,Z) is the minmod function of four

arguments.

¢-MP5 RECONSTRUCTION
(—-DMM(X.Y) = 0.5%(3IGN(1., X} + SIGN(1.,Y})*

& MIN(ABS(X),AB3(Y))
c—-DM4(W,X,Y,2) = 0.125%(SIGN(1., W} + SIGN(1.,X))*
& ABS( (3IGN(1.,W) + SIGN(1..Y))*
& (SIGN(1., W) 4 SIGN(1..2)) )
& “MIN{ABS(W),AB3(X),AB3(Y ) ABS3(Z))

Bl = 0.016666666667
B2 = 1.3332333333333
ALPHA = 4

EPSM = 1.E-10

VOR = B1%(2*V(J-2)-13.*V(J-1)

&+ 47.2V(I) + 277V(I+1)

& - 32V(I+2) )

VMP= V(J) + DMM(V(J+1)-V(J),ALPHAX(V(J)-V(J-1)))
IF((VOR-V(J))*(VOR-VMP).LE. EPSM) THEN

VL(J) = VOR

ELSE

ELSE

DIMI = V(1-2)-2.*V(J.1)4 V(] )

DJ = V(J-1)-2*V(J )+ V(I+1)

DJP1 = V(J )-2*V(J+1)+ V(J+2}

DM4JPH= DM4(4.*DJ-DJP1,4 *DJP1-DJ,DJ,DJP1)
DM4JMH= DM4(4.*DJ-DJM1,4 *DJM1-DJ,DJ,DIM1)
VUL = V(J) + ALPHA®(V(J)-V(J-1))

VAV = 0.5%(V(J) + V(J+1))

VMD = VAV - 0.5*DM4JPH

VLG = V(J) 4 0.5%(V(J)-V(J-1)) + B2*DM4JMH
VMIN = MAX(MIN(V(J),V(J+1),VMD),

& MIN{V(J),VUL,VLC))

VMAX = MIN(MAX(V(J),V(J+1),VMD),

& MAX(V(J),VEL,VLC))

VL{J) = VOR + DMM(VMIN-VOR,VMAX-VOR)
ENDIF

C-WENO5 RECONSTRUCTION



EPSW = 1.E-6

B1 = 1.083333333333

B2 = 0.166666666667

DIMI1 = V(J-2)-2*V(I-1)+ V(I )
EJM1 = V(J-2)-4*V(J-1)43.*V(J )

DJ = V(J-1)-2*V(J )+  V(J+1)

EJ = V(J1)  V(J41)

DJP1 = V(J )2*V(J+1)+  V{J+42)
EJP1 = 3.%V{J)-4 *V(J+ 1)+ V(J+2)

DISO = BI*DIJM1*DJM1 4+ 0.25*EJM1*EJIM1 4+ EP3SW
DiS1 = B1*DJ*DJ + 0.25*EJ*EJ + EPSW
DIS2 = B1*DJP1*DJP1 + 0.25*EJP1*EJP1 4+ EP5W

22V(J-2)-T4V(J- 1)+ 11.5V(] )
V(I-1)452V(3 )4 2.%V(I+1)
22V(J )+5*V(JI+1) V(JI+2)

Q30
Qa1
Q32

i

D01 = DIS0/DIS1

D02 = DIS0/DIS2

A1BAO = 6.*D01*DO01

A2BAD = 3.*D02*D02

WO = 1./(1. + A1BAO + A2BAOD)

W1 = A1BAO*WO

W2 =1 - W0. W1

VL(J) = B2*{ W0*Q30 4+ W1*Q31 + W2%Qa2 }

I 1

C-ENO3 RECONSTRUCTION
DATA CM(1,1),CM(1,2),CM(1,3)/2 -7 11/
DATA CM(2,1),CM(2,2),CM(2,3)/-1.,5.,2./
DATA CM(3,1),CM(3,2),CM(3,3)/2 5 -1/

Bl = 0.166666666667

SP = ABS( V(J+1)- V(J )

SM = ABS( V(J )- V(J-1})

DJ = ABS( V(J41)- 2.*V(J ) 4 V(I-1))

1F(2.*SP .GT. SM) THEN
DJM1 = ABS( V(J )- 2*V(I1.1) 4 V(J-2})
IF(DJ. GT.2*DJM1) THEN
1D =1
ELSE
ID =2
ENDIF
ELSE
DJPI = ABS( V(J42)-2.*V{J+1) + VI )
IF(2.*DJP1 .GT. DJ} THEN
ID =2
ELSE
ENDIF
ENDIF

VL(J)= { CM(ID,1}*V(J-3+1D} + CM{ID 2)*V(J-24ID) +
& CM(ID,3)*V(J-141D) )*B1
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Figure 4.7(a): Double Mach reflection problem with MP5. CFL = 0.4, 240 X 60 grid.
30 density contours from 1.73 to 21. CPU time = 5553 seconds.
CPU time for constant reconstruction= 1122 seconds.
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Figure 4.7(b): Double Mach reflection problem with WENO5, CT'L = 0.4, 240 X 60 grid.
30 density contours from 1.73 to 21. CPU time = 6843 seconds.
CPU time for constant reconstruction= 4122 seconds.
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